
Automatic Library Generation for BLAS3 on GPUs

Huimin Cui∗†, Lei Wang∗†, Jingling Xue‡, Yang Yang∗† and Xiaobing Feng∗

∗Institute of Computing Technology, Chinese Academy of Sciences, China
†Graduate University, Chinese Academy of Sciences, China

‡School of Computer Science and Engineering, University of New South Wales, Australia

{cuihm,wlei,yangyang,fxb}@ict.ac.cn jingling@cse.unsw.edu.au

Abstract—High-performance libraries, the performance-
critical building blocks for high-level applications, will assume
greater importance on modern processors as they become more
complex and diverse. However, automatic library generators
are still immature, forcing library developers to manually tune
library to meet their performance objectives.

We are developing a new script-controlled compilation frame-
work to help domain experts reduce much of the tedious and
error-prone nature of manual tuning, by enabling them to lever-
age their expertise and reuse past optimization experiences. We
focus on demonstrating improved performance and productivity
obtained through using our framework to tune BLAS3 routines
on three GPU platforms: up to 5.4x speedups over the CUBLAS
achieved on NVIDIA GeForce 9800, 2.8x on GTX285, and 3.4x on
Fermi Tesla C2050. Our results highlight the potential benefits of
exploiting domain expertise and the relations between different
routines (in terms of their algorithms and data structures).

I. INTRODUCTION

Level 3 Basic Linear Algebra Subprograms (BLAS3) are

performance-critical building blocks for high-level scientific

applications, and highly efficient implementations of those

routines enable scientists to achieve high performance at little

cost. Automatically Tuned Linear Algebra Software (ATLAS)

[1] is a well-known automatic BLAS3 generator, which gener-

ates efficient library implementations for platforms possessing

an ANSI/ISO C compiler. Unfortunately, such tools are not

yet available on the state-of-the-art many-core architectures

with tens or even hundreds of cores being integrated onto

a single chip, such as NVIDIA GPUs. As a result, library

developers have to manually tune their applications to meet

their performance objectives, which is tedious, error-prone and

time-consuming [2].

A major challenge when moving to NVIDIA GPUs is

how to reuse earlier tuning results. In ATLAS, the tuning

results for GEMM bring benefits to a number of other BLAS3

routines. For example, the SYMM routine is implemented in

a recursive way so that SYMM is split into smaller SYMM

and GEMM problems. By reusing the tuning experiences for

GEMM, SYMM delivers the performance close to that of

GEMM (108GFLOPS for SYMM compared to 116GFLOPS

for GEMM on an Intel Xeon platform). However, recursion is

not efficiently supported on NVIDIA GPUs. As a result, it is

not straightforward to reuse the tuning results of GEMM for

other BLAS3 routines. For example, on the GTX285 platform,

the performance of GEMM in CUBLAS 3.2 is 420GFLOPS

while SYMM achieves only 155GFLOPS.

We are presently working on developing an automatic

library generator for a number of BLAS3 routines on NVIDIA

GPUs. To enable tuning experiences to be reused, our solution

is to let developers focus on the differences between different

library routines and specify them using the provided ADL

(Adaptor Definition Language) interface. This interface en-

ables developers to define adaptors in terms of optimization

guidelines to relate a new routine with an existing one. For this

purpose, we have developed an OA (Optimization Adaptor)

framework based on our existing EPOD system [3]. This

system provides an EPOD script interface to encapsulate

existing tuning experiences into optimization schemes.

In this paper, we apply our OA framework to tune the

BLAS3 library on three NVIDIA GPU platforms. Our exper-

imental results demonstrate that our method can help library

developers achieve excellent performances rapidly: up to 5.4x

speedups over CUBLAS 3.2 on GeForce 9800, 2.8x for

GTX285, and 3.4x for Fermi Tesla C2050.

The main contributions of this paper include:

• an adaptor definition language, which works together with

EPOD scripts to relate new routines with existing ones;

• an OA framework to generate optimization schemes for

new routines based the developer-provided information

specified using the ADL interface; and

• experimental results showing performance speedups of up

to 5.4x, 2.8x and 3.4x relative to CUBLAS 3.2 on three

different NVIDIA GPU platforms.

The rest of the paper is organized as follows. Section II pro-

vides an overview of our OA framework. Section III explains

the process of encapsulating existing tuning experiences into

individual optimization schemes. Section IV describes how

to extend existing optimization schemes into new ones for

new routines. Section V presents our experimental results and

analysis. Section VI discusses the related work. Section VII

concludes the paper and discusses our future work.

II. THE OA FRAMEWORK

Figure 1 depicts our OA framework, which consists of two

major components: the composer and the EPOD translator.

• The EPOD script. Such a script describes the optimiza-

tion scheme used for a specific code region, guiding the

EPOD translator to apply the optimizations specified in

the script to the code region. The developers can write an

EPOD script file manually in order to summarize their

Fig. 1: An overview of our OA framework.

earlier tuning experiences. As the main contribution of

this work, our OA framework enables new EPOD scripts

to be automatically generated for new applications with

developers’ assistance.

• The ADL file. Such a file describes how to relate

a new routine with an existing one through so-called

adaptors. The ADL interface enables developers to define

an adaptor to obtain an alternative implementation.

• The Composer. This module composes an existing

EPOD script with the user-defined adaptors, determines

how to integrate the adaptors into the script, and generates

the new EPOD script(s) for the new routine.

• The EPOD translator. The EPOD translator is an

component of our earlier EPOD framework [3], which

takes EPOD scripts as input, applies the user-specified

optimization schemes in the scripts to some selected

code regions, and finally, generates the optimized source

program (to be fed to a traditional compiler [3]).

Our OA framework will generate a set of code variants

according to the composed EPOD scripts obtained. The best

among the set is searched for. Optimization parameters, such

as tile size, are automatically tuned with the method in [4].

In Section III, we review the EPOD translator to explain

how it applies the optimization sequences specified in scripts

to optimize a routine on GPUs. In Section IV, we discuss how

to define an adaptor for an existing EPOD script and generate

new EPOD scripts for a new routine automatically.

III. CREATING AN OPTIMIZATION SCHEME

The developers can summarize existing tuning experiences

and encapsulate them into an optimization scheme in term of

an EPOD script, which is passed to the EPOD translator and

applied appropriately to a selected code region. In this section,

we first review the EPOD translator and then explain how to

express an optimization scheme using a script.

A. The EPOD Translator

Unlike traditional compilers, our translator is modularized.

In traditional compilers, the optimization flow is fixed even

though the user has some marginal control on the opti-

mizations used and their phase ordering by switching on/off

optimization flags. In our translator, optimization components

Fig. 2: An overview of EPOD translator [3].

are made available in multiple pools, where the optimizations

in a pool are not pre-ordered. The user can select some

components from these pools and synthesize an optimization

sequence to apply to a particular code region.

In [3], we introduced a prototyping source-to-source trans-

lator with a sequential program as input. As illustrated in

Figure 2, our compiler is implemented on top of the Open64

infrastructure. We included two optimization pools in our

prototype. The polyhedral transformation pool is implemented

based on URUK [5], and consists of a number of loop transfor-

mations performed in the polyhedral representation (IR). The

traditional optimization pool is performed on Open64’ com-

piler internal representation (IR) and implemented based on

Open64. The WRaP-IT and URGenT components introduced

in [5] are used for the indicated IR conversions.

As shown in Figure 2, the source code is translated into the

compiler IR, which is then converted to the polyhedral IR by

WRaP-IT. A URUK script is generated from the given EPOD

script and the specified loop transformations are applied from

the polyhedral transformation pool to the polyhedral IR. Then

URGenT converts the transformed polyhedral IR back into

the compiler IR, annotated with user’s guidelines. Based on

these annotations, the requested components in the traditional

optimization pool are invoked in the user-specified order.

Finally, the new compiler IR is translated back to C source

code with the whirl2c routine in Open64. [3]

B. The EPOD Script for GEMM

In this section, we focus on the EPOD script for GEMM-

NN (where “NN” means neither of the source matrices is

transposed) to demonstrate the optimization components that

we provide for GPUs. The scheme is derived from the work

of Volkov et al [2], including the following critical steps: (1)

thread grouping to distribute the iterations across thread blocks

and threads in a thread block, (2) loop tiling [6] for improving

2

Fig. 3: The EPOD script for GEMM-NN on GPUs.

locality, (3) loop unrolling, (4) allocating the source sub-

matrices in shared memory, and (5) allocating the destination

sub-matrices in registers. Each of these steps is mapped to an

optimization component in our two optimization pools.

Figure 3 presents the EPOD script for GEMM-NN. The

matrices are assumed to be stored in column major to be

consistent with BLAS3. Note that the loops in a loop nest are

labeled (e.g., Li, Lj, and Lk) so that they can be identified by

various loop transformations. In Figure 3, the two components,

loop_tiling and loop_unroll, are intuitive but the

other three are more complex and discussed below.

• thread grouping. This optimization aims to expose two-

level parallelism, by distributing loop iterations across

the thread blocks and threads within a thread block.

Our polyhedral-based implementation is similar to the

one presented by Baskaran et al in [7]. Loop tiling is

used at the first step to generate multi-level parallel tiled

code. Furthermore, thread distribution is used to replace

the loop indices for parallel iterations into block and

thread index, blockIdx and threadIdx, in CUDA.

After thread grouping has been applied, the workload

distribution of the routine is shown in Figure 4.

Fig. 4: Workload Distribution of GEMM-NN.

• SM alloc. This optimization explicitly specifies that

some variables are allocated in shared memory. By

default, all data are located in global memory. This

optimization invocation creates a copy of a specified

object in shared memory in a specified allocation mode.

Presently, three allocation modes are:

NoChange (dest = src)

Transpose (dest = srcT)

Symmetry (dest = src + srcT − diag(src))

For the SM_alloc optimization invoked in Figure 3,

Transpose is used to yield stride-1 accesses to shared

memory in the inner loop of GEMM-NN [2].

Note that library developers are only required to specify

which objects are placed in shared memory and how they

are placed in terms of allocation modes. Our framework

will automatically determine the data mapping induced

and generate the data movement statements required. In

addition, padding is done automatically to reduce bank

conflicts. For example, a two-dimensional array of size

(16, 16) will be padded to (16, 17) for memory efficiency.

• Reg alloc. This optimization explicitly maps some vari-

ables into registers. As in SM_alloc, our EPOD trans-

lator automatically determines the data mapping induced

and generates the data movement statements required.

For the other optimizations not used for GEMM-NN but

provided for other routines in BLAS3 in our optimization

pools, we will discuss them in Section IV when they are

invoked.

IV. EXTEND TO NEW OPTIMIZATION SCHEME

We discuss how to define four adaptors used in BLAS3,

Adaptor Transpose, Adaptor Symmetry, Adaptor Triangular

and Adaptor Solver. We describe how our composer works

by showing how the optimization scheme used in GEMM-NN

is extended to more routines. As before, a matrix is assumed

to be stored in column major to be consistent with BLAS3.

A. The Adaptor Definition Language (ADL)

An adaptor is defined to adapt an optimization scheme

for a routine involving matrices to others with some matrix

variations, focusing on the matrices themselves instead of the

operations applied to them. The ADL is provided for develop-

ers to describe an adaptor in terms of compiler optimizations.

adaptor name(object):

| optimization components invocation sequence 1

{cond(condition 1)}
| optimization components invocation sequence 2

{cond(condition 2)}
| ...

With this syntax, the alternative implementations of an adap-

tor can be defined so that multiple optimization schemes will

be generated, enabling the best one to be selected by a search.

Furthermore, developers can specify optional conditions for

each implementation so that multiple-versioned code can be

generated (to be discussed using Adaptor Triangular).

1) Adaptor Transpose: This adaptor is defined as follows:

Adaptor Transpose(X):

| GM map(X, Transpose);

| SM alloc(X, Transpose);

which specifies its three alternative implementations: (1) the

empty rule keeps X unchanged in global memory and the

3

transposition is not applied to the matrix until accessed, (2)

the GM_map rule transposes X in global memory, which means

the transposition is applied before the matrix is used (implying

that the optimization scheme of GEMM-NN can be applied),

and (3) the SM_alloc rule specifies that the transposition

is applied to sub-matrices, if possible, in which case, our

composer will determine the size of shared memory allocated.

Below we examine GM_map, which is implemented based

on the polyhedral IR, including the following steps:

• Step 1. Generate statements for memory allocation and

data mapping. In the case of the Transpose mode, the

corresponding statements are:

f o r (i = 0 ; i < M; i ++)
f o r (j = 0 ; j < N; j ++)

NewX[i] [j] = X[j] [i] ;

• Step 2. Distribute the above statements across the CUDA

thread blocks and threads within a thread block, using the

method similar as the one used for thread_grouping.

• Step 3. Modify the subscript in the polyhedral IR [5] to

replace the reference of X[i][j] with NewX[j][i].

In our OA framework, GM_map is valid only when it is the

first optimization in an optimization sequence.

2) Adaptor Symmetry: This is designed for symmetric ma-

trices. Figure 5 shows a symmetric matrix with only its left

lower triangular area stored. For such a matrix, the accesses

can be divided into a real area and a shadow area. The shadow

area is not stored explicitly but derived from the real area.

The following code segment shows a typical access pattern

to a symmetric matrix A:

f o r (i = 0 ; i < M; i ++)
{

f o r (k = 0 ; k < i ; k ++)
{

. . . A[i] [k] ; / / f o r r e a l area

. . . A[i] [k] ; / / f o r shadow area
}
. . . A[i] [i] ; / / f o r d i a g o n a l e l e m e n t s

}

Fig. 5: Computation split for SYMM on GPUs.

In the innermost loop of the above code, two accesses to

A[i][k] are included, with the first to the real area and the

second to the shadow area. As a result, A is accessed in a

mixed mode (row major for the first part and column major

for the second part). However, in scientific computations, a

matrix is preferred to be efficiently accessed in either row or

column major (but not both). We use Adaptor Symmetry to

re-format such a loop nest to remove the mixed-mode accesses:

Adaptor Symmetry(X):

| GM map(X, Symmetry);

format iteration(X, Symmetry);

| format iteration(X, Symmetry);

SM alloc(X, Symmetry);

Like Adaptor Transpose, this adaptor supports three alter-

native implementations. The empty rule keeps X unchanged.

The second rule applies first GM_map(X, Symmetry) to

obtain a matrix containing both the real and shadow areas

with the computation of X + XT − Diag(X) and then

format_iteration, which is composed of loop fission

and fusion, to the new matrix. Both components work together

to transform the above loop nest into the standard GEMM-NN.

Therefore, the optimization scheme of GEMM-NN can then

be applied. We will discuss format_iteration in detail

below. The third rule invokes format_iteration but loop

fusion will fail (as discussed below). Then SM_alloc seeks

for appropriate sub-matrices to be allocated in shared memory.

The GM_map and SM_alloc components are discussed in

earlier sections. Below we discuss format_iteration, fo-

cusing on the second rule for Adaptor Symmetry. In this sec-

ond rule, GM_map is applied before format_iteration is

invoked. As a result, the above-mentioned loop nest has been

turned into:

f o r (i = 0 ; i < M; i ++)
{

f o r (k = 0 ; k < i ; k ++)
{

. . . NewA[i] [k] ; / / f o r r e a l area

. . . NewA[k] [i] ; / / f o r shadow area
}
. . . NewA[i] [i] ; / / f o r d i a g o n a l e l e m e n t s

}

There are three steps involved in format_iteration:

• Step 1. Loop fission is applied to the accesses of X so that

the loop nest is split into three with each containing ac-

cesses to X’s three disjoint areas, called real-area-access,

shadow-area-access, and diag-area-access, respectively:

f o r (i = 0 ; i < M; i ++)
{

f o r (k = 0 ; k < i ; k ++)
. . . NewA[i] [k] ; / / f o r r e a l area

f o r (k = 0 ; k < i ; k ++)
. . . NewA[k] [i] ; / / f o r shadow area

. . . NewA[i] [i] ; / / f o r d i a g o n a l e l e m e n t s
}

4

• Step 2. After Step 1, the loop nest for real-area-access

accesses X in row major and the loop nest for shadow-

area-access accesses X in column major. When the col-

umn major order is detected, loop interchange is applied

to change it into the row major order:

f o r (i = 0 ; i < M; i ++)
{

f o r (k = 0 ; k < i ; k ++)
. . . NewA[i] [k] ; / / f o r r e a l area

f o r (k = i +1 ; k < K; k ++)
. . . NewA[i] [k] ; / / f o r shadow area

. . . NewA[i] [i] ; / / f o r d i a g o n a l e l e m e n t s
}

• Step 3. Loop fusion is applied if possible. If loop inter-

change was applied earlier, there may be an opportunity

to fuse all loop nests to obtain the standard GEMM-NN.

The code shown in Step 2 can be fused into:

f o r (i = 0 ; i < M; i ++)
f o r (k = 0 ; k < K; k ++)

. . . NewA[i] [k] ;

In summary, the basic idea behind format_iteration

is to apply loop fission and fusion whenever possible.

Therefore, for the third rule of Adaptor Symmetry, the

loop nests cannot be fused after loop fission so that

format_iteration degenerates into a simple loop fission.

The unfusable code after loop fission is:

f o r (i = 0 ; i < M; i ++)
{

f o r (k = 0 ; k < i ; k ++)
. . . A[i] [k] ; / / f o r r e a l area

f o r (k = 0 ; k < i ; k ++)
. . . A[i] [k] ; / / f o r shadow area

. . . A[i] [i] ; / / f o r d i a g o n a l e l e m e n t s
}

3) Adaptor Triangular: This adaptor applies to a triangular

matrix. Unlike a symmetric matrix, which can derive its

shadow area from its real area, a triangular matrix induces

only accesses to the real area. Its typical access pattern is:

f o r (i = 0 ; i < M; i ++)
{

f o r (k = 0 ; k <= i ; k ++)
{

. . . A[i] [k] ;
}

}

The triangular iteration space would cause the threads in

a thread block to exhibit different loop bounds (called un-

uniform loop bounds), thereby decreasing performance. Our

adaptor implementation addresses on this performance issue in

two ways, loop peeling and padding, as illustrated in Figure 6.

The first separates the triangular areas from rectangular ones to

reduce the effects of un-uniform loop bounds on performance.

The second pads the triangular iteration spaces into rectangular

ones to eliminate un-uniform loop bounds completely. Note

that the blank areas must be cleared as 0’s. Otherwise the

padded iterations would generate unpredictable results.

Fig. 6: Peeling and padding for a triangular matrix.

Therefore, this adaptor is implemented as follows:

Adaptor Triangular(X):

| peel triangular(X);

| padding triangular(X); {cond(blank(X).zero = true)}

There are two components invoked in the adaptor implemen-

tation: peel_triangular and padding_triangular.

They work with the following steps:

• Step 1. Expose the X-access loop nest and detect for

the trapezoid areas. Note that for a triangular area, the

detection will fail before loop tiling is applied.

• Step 2. If a trapezoid area is detected,

peel_triangular peels the triangular area off

the rectangular ones, while padding_triangular

pads the triangular area into another rectangular one.

In the third rule of Adaptor Triangular, we require that

blank(X).zero = true. This will lead the OA frame-

work to generate multiple-version code as follows:

i n t b l a n k z e r o = c h e c k b l a n k z e r o (X) ;
i f (b l a n k z e r o)
{

/ / code f o r padded t r i a n g u l a r area .
}
e l s e
{

/ / code w i t h o u t padd ing .
}

4) Adaptor Solver: This adaptor, which comes from the

TRSM routine in BLAS3, updates a matrix on-the-fly:

f o r (i = 0 ; i < M; i ++)
f o r (j = 0 ; j < N; j ++)

f o r (k = 0 ; k <= i ; k ++)
B[i] [j] = . . . B[k] [j] ;

5

The access pattern is similar to that in TRMM with the dif-

ference that the dependence from B[i][j] to B[i+1][j]

prevents the sub-matrices along the i dimension from be-

ing computed in parallel. This problem can be handled by

thread_grouping. Therefore, the thread grouping returns

a different workload distribution from GEMM-NN with the

adjusted work load for a thread block as shown Figure 7.

As shown in Figure 7, the workload of each thread

block is separated into two parts. Let us take B2 as an

example. B2-A20*B0-A21*B1 can be simultaneously ex-

ecuted by the threads in a thread block, but the final step

B2=TRSM(A22,B2) has to be sequentially executed by only

one thread. Therefore, the adaptor is defined as follows:

Adaptor Solver(X):

| peel triangular(X);

binding triangular(X, 0);

A32A30 A31
A33

B0

B1

B2

B3

TRSM

A00

A10
A11

A20 A21
A22

B0 = TRSM(A00, B0)

=

B1 = B1 -A10*B0

B1 = TRSM(A11, B1)

B2=B2-A20*B0-A21*B1

B2 = TRSM(A22,B2)

B3=B3-A30*B0-A31*B1-A32*B2

B3 = TRSM(A33,B3)

Fig. 7: Workload Distribution for Adaptor Solver.

The binding_triangular component seeks for a tri-

angular area and forces it to be executed in sequential mode.

Therefore, the corresponding code is bounded to an individual

thread in a thread block. The implementation is flexible en-

closing the code region for the triangular area with a condition

of threadIdx.x == 0&&threadIdx.y == 0.

B. The Composer

The composer takes an existing EPOD script and an adaptor

as input, composes the referenced optimization components

together, and derives one (or more) new EPOD scripts for each

adaptor implementation. There are five major components:

splitter, mixer, filter, allocator and generator.

The major workflow is shown in Figure 8. The splitter

splits an optimization sequence into a polyhedral part and

a traditional part, which are fed to the mixer and allocator,

respectively. The mixer mixes the two polyhedral transfor-

mation sequences together and generates multiple resulting

sequences, with illegal sequences filtered out by the filter.

Meanwhile, the traditional transformations are analyzed and

the memory allocation schemes (traditional transformations)

are determined by the allocator. Finally, the legal polyhedral

transformations and memory allocation schemes are merged

together and new EPOD scripts are generated.

The splitter and generator are straightforwardly imple-

mented. Below we discuss the mixer, filter and allocation in

detail.

Fig. 8: The Composer Framework.

1) Mixer: This component mixes two polyhedral trans-

formation sequences. As shown in Figure 9, A and B are

mixed together. The mixer interleaves components from A

and B together. Meanwhile, the order of components from

the same sequence is strictly kept. Then the mixer checks

location constraints for each component and generates the

mixed transformation sequence if the constraints are satisfied.

For example, GM_map should be fixed as the first in a

sequence if it appears. Therefore, the mixer does not generate

any sequences violating this condition.

Fig. 9: The Mixing Process.

2) Filter: This component tries every transformation se-

quence generated by the mixer and applies the transformation

component by component. If a specific constraint for some

component is not satisfied, then the corresponding component

is omitted. For example, after Adaptor Triangular and the

EPOD script of GEMM-NN have been mixed, the following

sequences will be the input of the filter:

6

1) thread_grouping, loop_tiling,

loop_unroll

2) peel_triangular, thread_grouping,

loop_tiling, loop_unroll

3) thread_grouping, peel_triangular,

loop_tiling, loop_unroll

4) thread_grouping, loop_tiling,

peel_triangular, loop_unroll

5) thread_grouping, loop_tiling,

loop_unroll, peel_triangular

6) padding_triangular, thread_grouping,

loop_tiling, loop_unroll

7) thread_grouping, padding_triangular,

loop_tiling, loop_unroll

8) thread_grouping, loop_tiling,

padding_triangular, loop_unroll

9) thread_grouping, loop_tiling,

loop_unroll, padding_triangular

Sequences 1, 3, 4, 7, 8 are successfully applied and thus

added to a sequence set, denoted semi-output. For Sequences

2 and 6, peel_triangular fails because it cannot detect

a trapezoid area; they degenerate into Sequence 1. For Se-

quences 5 and 9, loop_unroll fails due to the existence of

the non-rectangular areas; they degenerate into the following

two sequences, which are added into semi-output:

1) thread_grouping, loop_tiling,

peel_triangular

2) thread_grouping, loop_tiling,

padding_triangular

In summary, the semi-output of the filter includes seven

sequences. These sequences are checked to ensure that data

dependences are satisfied with the PolyDeps tool [8]. Illegal

ones are removed and the legal ones generated.

3) Allocator: The allocator integrates the memory alloca-

tion invocations in the given EPOD script and the adaptor and

analyzes and determines the final memory allocation scheme,

including which memory hierarchy a matrix should reside

in and the granularity of the memory allocation. Note that

GM_map is not considered because it is a polyhedral-based

transformation and must be applied at the first step.

Consider the matrix multiplication of the form C = αAT ∗
B + βC. The adaptor defines one rule that declares A to be

allocated in shared memory, which does not conflict with those

in the EPOD script, so that the declaration is kept.

When we turn to another variation of GEMM, C = αA ∗
BT + βC, the adaptor still declares B to be allocated in

shared memory in the Transpose mode. Meanwhile, the

EPOD script also declares B in the same way. In this case, the

allocator integrates both together and generates one declaration

of SM_alloc(B, NoChange).

The memory allocation and the corresponding statements

are processed when SM_alloc is executed, using the method

in [9]. This will not be discussed any further in the paper.

V. PERFORMANCE EVALUATION AND ANALYSIS

We evaluate our work on three GPU platforms: GeForce

9800, GTX285 and Fermi Tesla C2050. In this paper, we focus

on single-precision floating point computations.

• The GeForce 9800 platform consists of 16 streaming

multiprocessors (SMs), each containing 8 streaming pro-

cessors (SPs). Each SM has 8192 registers and a 16KB

local scratchpad memory shared by all simultaneously

active threads in the SM. The peak performance is

429GFLOPS.

• The GTX285 platform consists of 30 SMs, each contain-

ing 8 SPs. Each SM has 16384 registers and a 16KB local

scratchpad memory shared by all simultaneously active

threads in the SM. The peak performance is 709GFLOPS.

• The Fermi Tesla C2050 platform consists of 14 SMs, each

containing 32 SPs. Each SM has 32768 registers and a

48KB local scratchpad memory (configured to be) shared

by all simultaneously active threads in the SM. The peak

performance is over a Tera FLOPS.

The original BLAS3 source programs are first transformed

by our OA framework. Then the transformed source code is

compiled by nvcc with the -O2 optimization flag.

A. Results

Our main results can be summarized as follows:

• Our method can achieve better performances for 24 vari-

ants of BLAS3 routines than those provided in CUBLAS

3.2 with up to 5.4x speedups being achieved;

• Our method has successfully narrowed the performance

gaps between matrix-multiplication variants and the

GEMM-NN routine, showing the benefits of optimizing

libraries by exploiting existing tuning results; and

• Our method shows that it can yield stable performances

for BLAS3 routines for varying problem sizes.

As discussed earlier, our OA framework will generate

multiple alternative EPOD scripts for a given routine with

the best performer being selected by a search.

Figure 10 – 12 show the performance speedups for the 24

variants of BLAS3 routines on the three platforms compared

with CUBLAS 3.2. These variants are identified by different

postfixes. For example, TRSM-LL-N is a variant of TRSM

such that LL stands for “Left Lower triangular” and N stands

for “No transposed.” The problem size is fixed as 4096. We

also compare our method with MAGMA v0.2 [10] on GTX285

using the GEMM and TRSM variants, as shown in Figure 11

(SYMM and TRMM variants are not compared due to their

absence in MAGMA library). Our method achieves better per-

formances than MAGMA v0.2. The MAGMA performances

on the Geforce and Fermi platforms are not presented because

MAGMA performs no better than CUBLAS on Geforce and

the MAGMA library on Fermi has included only the GEMM

routine.

7

0

50

100

150

200

250

P
e
rf
o
rm

a
n
c
e

 (
G
F
L
O
P
S
)

CUBLAS OA

Fig. 10: Performance of BLAS3 on GeForce 9800.

0

100

200

300

400

500

P
e
rf
o
rm

a
n
c
e

 (
G
F
L
O
P
S
)

CUBLAS MAGMA OA

Fig. 11: Performance of BLAS3 on GTX 285.

1) Speedups Over CUBLAS: Our experimental results show

that up to 2.8x speedups over the CUBLAS library are

achieved on GTX 285, 5.4x on GeForce 9800, and 3.4x on

Fermi Tesla C2050. Specifically, the performance of SYMM

routines increases from 155GFLOPS to 403GFLOPS on GTX

285, and from 42GFLOPS to 225GFLOPS on GeForce 9800.

The performance comparison for SYMM is the

most glaring, so we focus on it to compare the

profiles of our OA generated code with CUBLAS 3.2

(ssymm main hw lo left fulltile routine) for the problem

size 4096. Table I shows some profile data collected with

cuda_profile on GeForce 9800.

The profile results show that two issues contribute to the

performance speedups of OA over CUBLAS: (1) the number

of instructions executed, which is halved by OA, and (2)

the number of gld incoherent (non-coalesced global mem-

ory) loads executed, which is completely removed by OA.

Our method has successfully coalesced the global memory

addresses simultaneously accessed by each thread of a half-

warp into a single contiguous aligned memory access.

TABLE I: Profiles of SYMM for OA and CUBLAS 3.2 on

GeForce 9800. Here, gld incoherent stands for non-coalesced

global memory loads, gld coherent for coalesced global mem-

ory loads, gst incoherent for non-coalesced global memory

stores, gst coherent for coalesced global memory stores, and

instructions for dynamic number of instructions.

Events CUBLAS OA

gld incoherent 134M 0

gld coherent 25M 42M

gst incoherent 0 0

gst coherent 0.52M 1.04M

instructions 340M 167M

For SYMM on GTX285, the performance gap between OA

and CUBLAS is smaller, because the non-coalesced memory

8

0

100

200

300

400

500

600

700

P
e
rf
o
rm

a
n
c
e

 (
G
F
L
O
P
S
)

CUBLAS OA

Fig. 12: Performance of BLAS3 on Fermi Tesla C2050.

read problem in CUBLAS did not show up. The performance

improvement made by OA mainly comes from the reduced

instruction count, as shown in Table II.

TABLE II: Profiles of SYMM for OA and CUBLAS 3.2 on

GTX285.

Events CUBLAS OA

gld incoherent 0 0

gld coherent 127M 33M

gst incoherent 0 0

gst coherent 0.42M 0.84M

instructions 181M 88M

On the Fermi Tesla C2050 platform, the profiler cannot

provide the memory coalescing statistics. So we collected the

global/local memory access events and executed instructions.

As shown in Table III, the performance improvement made

by OA mainly comes from reductions on both the number of

instructions and the number of global loads executed.

TABLE III: Profiles of SYMM for OA and CUBLAS 3.2 on

Fermi Tesla C2050. Here, gld request stands for the number

of global loads per warp in a SM, gst request for the number

of global stores per warp in a SM, local read for the number

of local loads per warp in a SM, local store for the number

of local stores per warp in a SM, and inst executed for the

number of instructions executed.

Events CUBLAS OA

gld request 14.53M 0.08M

gst request 0.05M 0.05M

local read 0 0.87M

local store 0M 0.18M

inst executed 805M 336M

2) Narrowing the Performance Gap: Furthermore, Fig-

ures 10, 11, and 12 show that the performances of the 24

BLAS3 routine variants achieved by our OA method are

comparable to that of GEMM-NN. In contrast, the CUBLAS

performances fluctuate drastically across these routines. For

example, when moving from GEMM-NN to SYMM-LL

on GTX285, the performance drops from 420GFLOPS to

155GFLOPS. Our method has succeeded in narrowing such

performance gap.

3) Achieving the Scalable Performance: Figure 13 presents

our performance results with the problem sizes varying from

512 to 4096 on GeForce 9800. Similar results can be observed

on GTX 285 and Fermi Tesla C2050. Our experimental results

show that our OA framework can achieve stable performances

for BLAS3 routines when the problem size varies.

B. Best-Performing EPOD Scripts

In our implementation, our OA framework automatically

generates multiple EPOD scripts for each routine, and search

ing is used to select the best-performing one. Figure 14 lists

the best-performing scripts for some routines.

VI. RELATED WORK

In order to assist library developers in managing program-

ming complexity, auto-tuning was developed by some library

writers, including ATLAS [1], FFTW [11]and SPIRAL [12].

These systems perform a systematic search over a collection

of automatically generated code variants. On the state-of-the-

art architecture platforms, the auto-tuning technology has been

applied to some specific applications, such as sparse matrix-

vector multiply [13], stencil computations [14], and dense

linear algebra [2]. There are some related efforts on integrating

compiler model-based methods into an auto-tuner in order to

automatically generate and search a set of alternative imple-

mentations [15], [16]. These efforts focus on pre-determined

code variant selection and parameter tuning for a specific

9

0

50

100

150

200

250

512 1024 2048 3072 4096

P
e
rf
o
rm

a
n
c
e

 (
G
F
L
O
P
S
)

Problem Size

CUBLAS LEGO

0

50

100

150

200

512 1024 2048 3072 4096

P
e
rf
o
rm

a
n
c
e

 (
G
F
L
O
P
S
)

Problem Size

CUBLAS LEGO

0

50

100

150

200

512 1024 2048 3072 4096

P
e
rf
o
rm

a
n
c
e

 (
G
F
L
O
P
S
)

Problem Size

CUBLAS LEGO

0

50

100

150

200

250

512 1024 2048 3072 4096
P
e
rf
o
rm

a
n
c
e

 (
G
F
L
O
P
S
)

Problem Size

CUBLAS LEGO

(a) GEMM-TN (b) TRMM-LL-N

(d) SYMM-LL(c) TRSM-LL-N

OA OA

OA OA

Fig. 13: Performance results with varying problem sizes on GeForce 9800.

application. In contrast, our work provides a general-purpose

framework to allow library developers to tune an optimization

scheme in a larger search space in a more flexible manner.

Iterative compilation is another research area to bridge the

gap between performance obtained by automatic and manual

optimizations [17], [18], [19], [20], which is an application-

independent technology and typically hunts for the best opti-

mization sequence from the search space involving optimiza-

tion flags, parameters and phase ordering. Some researchers

[21], [22] show that iterative compilation can achieve compet-

itive performance to hand-tuned code for specific applications.

There have been some research efforts on reducing the search

space [23], [24], [25]. On modern processors with the state-

of-the-art hardware features such as GPUs, Liu et al [26]

present a G-ADAPT framework for performing an iterative

search across a set of compiler parameter values.

To support active involvement of domain experts, re-

searchers are experimenting with collective optimization [27],

[28], [29] in the self-optimizing compiler framework, MILE-

POST GCC. The idea is to collect performance information

in a central database shared across different users and relies

on machine learning to compare semantic features and select

good optimization passes [29]. Rather than exploiting simi-

larity between applications, this work enables developers to

explicitly only describe the difference between routines.

The use of scripting language for optimization has been

presented in [30], [4], [31], [5], and proven to be a flexible

way to apply some optimizations for specific code regions.

Therefore, we have extended this method to provide high-level

optimization components as the underlying component.

VII. CONCLUSIONS

We have presented a script-controlled compilation frame-

work, OA, for accelerating library development on GPUs

and introduced the performance tuning process for BLAS3

routines. Our experimental results show that OA can be used to

improve the productivity of library development while promis-

ing to deliver good performances. Specifically, on NVIDIA

GPUs, up to 5.4x speedups over CUBLAS 3.2 are achieved

on GeForce 9800, 2.8x on GTX285 and 3.4x on Fermi Tesla

C2050. These results demonstrate the benefits in performance

tuning by reusing existing optimization experiences.

In future, we will extend our method to more routines and

multi-GPUs, which provide more opportunities and challenges

for automatic library generators.

VIII. ACKNOWLEDGEMENTS

We would like to thank all anonymous reviewers for their

comments and suggestions.

This research is supported in part by Chinese National Basic

Research Grants 2011CB302500 and 2011CB302504, an In-

novation Research Group of NSFC 60921002, a National Sci-

ence and Technology Major Project of China 2009ZX01036-

001-002, National Natural Science Foundations of China

10

SYMM-LN

Source Code:
Li: for (i = 0; i < M; i++)
 Lj: for (j = 0; j < N; j++)
 {
 Lk: for (k = 0; k < i; k++)
 {

 C[i][j] += A[i][k] * B[k][j];
 C[k][j] += A[i][k] * B[i][j];

 }
 Ld: C[i][j] += A[i][i] * B[i][j]
 }

EPOD Script:
 GM_map(A, Symmetry);
 format_iteration(A, Symmetry);
 (Lii, Ljj) = thread_grouping(Li, Lj);
 (Liii, Ljjj, Lkkk) =

loop_tiling(Lii, Ljj, Lkk);
 loop_unroll(Ljjj, Lkkk);
 SM_alloc(B, Transpose);
 reg_alloc(C);

GEMM-TN

Source code:
Li: for (i = 0; i < M; i++)
 Lj: for (j = 0; j < N; j++)
 Lk: for (k = 0; k < K; k++)

C[i][j] += A[k][i] * B[k][j]

EPOD Script:
 GM_map(A, Transpose);
 (Lii, Ljj) = thread_grouping(Li, Lj);
 (Liii, Ljjj, Lkkk) =

loop_tiling(Lii, Ljj, Lkk);
 loop_unroll(Ljjj, Lkkk);
 SM_alloc(B, Transpose);
 reg_alloc(C);

TRMM-LL-N

Source Code:
Li: for (i = 0; i < M; i++)
 Lj: for (j = 0; j < N; j++)
 Lk: for (k = 0; k <= i; k++)

 C[i][j] += A[i][k] * B[k][j]

EPOD Script:
 (Lii, Ljj) = thread_grouping(Li, Lj);
 (Liii, Ljjj, Lkkk) =

loop_tiling(Lii, Ljj, Lkk);
 padding_triangular(A);
 loop_unroll(Ljjj, Lkkk);
 SM_alloc(B, Transpose);
 reg_alloc(C);

TRSM-LL-N

Source Code:
Li: for (i = 0; i < M; i++)
 Lj: for (j = 0; j < N; j++)
 Lk: for (k = 0; k < i; k++)

 B[i][j] -= A[i][k] * B[k][j]

EPOD Script:
 (Lii, Ljj) = thread_grouping(Li, Lj);
 (Liii, Ljjj, Lkkk) =

loop_tiling(Lii, Ljj, Lkk);
 binding_triangular(A, 0);
 loop_unroll(Ljjj, Lkkk);
 SM_alloc(B, Transpose);
 reg_alloc(C);

Fig. 14: Best-performing EPOD Scripts for some BLAS3

Routines.

(60970024 and 60633040), a Beijing Natural Science Foun-

dation 4092044, and an Australian Research Council (ARC)

Grant DP0987236.

REFERENCES

[1] R. C. Whaley, A. Petitet, and J. Dongarra, “Automated empirical
optimizations of software and the atlas project,” in Parallel Computing,
2001.

[2] V. Volkov and J. Demmel, “Benchmarking gpus to tune dense linear
algebra,” in Proc. Supercomputing, 2008.

[3] H. Cui, J. Xue, L. Wang, Y. Yang, X. Feng, and D. Fan, “Extendable
pattern-oriented directives,” in CGO, 2011.

[4] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth, “A
scalable auto-tuning framework for compiler optimization,” in IPDPS,
2009.

[5] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam, “Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies,” IJPP, 2006.

[6] J. Xue, Loop Tiling for Parallelism. Boston: Kluwer Academic
Publishers, 2000.

[7] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic c-to-
cuda code generation for affine programs,” in CC, 2010.

[8] “Whirl represented as polyhedra - interface tool,” http://www.lri.fr/ gir-
bal/site wrapit/.

[9] M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Automatic data movement and com-
putation mapping for multi-level parallel architectures with explicitly
managed memories,” in PPoPP, 2008.

[10] E. Agullo, J. Demmel, J. Dongarra, N. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra on
emerging architectures: The plasma and magma projects,” Journal of

Physics: Conference Series, 2009.
[11] M. Frigo, “A fast fourier transform compiler,” in PLDI, 1999.
[12] M. Puschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,

J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W.
Johnson, and N. Rizzolo, “Spiral: Code generation for dsp transforms,”
in Proc. IEEE, special issue on “Program Generation, Optimization,

and Adaptation”, 2005.
[13] S. Williams, L. Oliker, R. W. Vuduc, J. Shalf, and J. D. K. A. Yelick,

“Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” in Proc. Supercomputing, 2007.

[14] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. A.
Patterson, J. Shalf, and K. A. Yelick, “Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures,” in Proc.

Supercomputing, 2008.
[15] C. Chen, J. Chame, and M. W. Hall, “Combining models and guided em-

pirical search to optimize for multiple levels of the memory hierarchy,”
in CGO, 2005.

[16] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. A.
Padua, K. Pingali, P. Stodghill, and P.Wu, “A comparison of empirical
and model-driven optimization,” in PLDI, 2003.

[17] L. Almagor, K. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves, D. Sub-
ramanian, L. Torczon, and T.Waterman, “Finding effective compilation
sequences,” in LCTES, 2004.

[18] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou,
“Iterative compilation in a non-linear optimisation space,” in Workshop

on Profile Directed Feedback-Compilation, PACT’98, 1998.
[19] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson,

M. Bailey, Y. Park, and K. Gallivan, “Finding effective optimization
phase sequences,” in LCTES, 2003.

[20] K. Cooper, P. Schielke, and D. Subramanian, “Optimizing for reduced
code space using genetic algorithms,” in LCTES, 1999.

[21] D. Barthou, S. Donadio, A. Duchateau, W. Jalby, and E. Courtois,
“Iterative compilation with kernel exploration,” in LCPC, 2007.

[22] T. Kisuki, P. M. W. Knijnenburg, M. F. P. O’Boyle, F. Bodin, and
H. A. G. Wijshoff, “A feasibility study in iterative compilation,” in Proc.

International Symposium on High Performance Computing, 1999.
[23] G. Fursin, A. Cohen, M. O’Boyle, and O. Temam, “A practical method

for quickly evaluating program optimizations,” in HiPEAC, 2005.
[24] J. Cavazos and J. E. Moss, “Inducing heuristics to decide whether to

schedule,” in PLDI, 2004.
[25] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P.

O’Boyle, J. Thomson, M. Toussaint, , and C. K. I. Williams, “Using
machine learning to focus iterative optimization,” in CGO, 2006.

[26] Y. Liu, E. Zhang, and X. Shen, “A cross-input adaptive framework for
gpu programs optimization,” in IPDPS, 2009.

[27] G. Fursin and O. Temam, “Collective optimization,” in HiPEAC, 2009.
[28] “Collective tuning,” http://ctuning.org/cbench.
[29] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,

B. Mendelson, P. Barnard, E. Ashton, E. Courtois, F. Bodin, E. Bonilla,
J. Thomson, H. Leather, C. Williams, and M. O’Boyle, “Milepost gcc:
machine learning based research compiler,” in Proceedings of the GCC
Developers’ Summit, 2008.

[30] M. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, and M. Khan, “Loop
transformation recipes for code generation and auto-tuning,” in LCPC,
2009.

[31] S. Donadio, J. Brodman, T. Roeder, K. Yotov, D. Barthou, A. Cohen,
M. J. Garzaran, D. Padua, and K. Pingali, “A language for the compact
representation of multiple program versions,” in LCPC, 2005.

11

